
 TPT 13 Severe Issues

IntroducƟon
============
The following document contains a list of known severe issues of TPT. By severe issues we mean
issues/bugs in parƟcular versions of TPT that:

 1. might cause malfuncƟons in the behavior of TPT
 2. are hard or even impossible to find by the TPT user herself/himself
 3. cause the risk that bugs/defects in a SUT (system under test) are not detected by TPT in cases where
 TPT would have been able to reveal these bugs/defects in the SUT without the aforemenƟoned
 malfuncƟon in the behavior of TPT.

Usually these severe issues address the situaƟons where the
problem might appear and have well-defined workarounds.

ISSUE # 33413
=============
TITLE:
Assessment funcƟon REQUIREMENTS.checked() does not work correctly, if the secound argument is a signal
or type boolean or int and not a verdict.

ISSUE DETECTION:
07-June-2022

AFFECTED VERSIONS OF TPT:
TPT 13 to TPT 18

PRECONDITIONS:
TPT Script Assessment contains REQUIREMENTS.checked("REQ-1",check_sig) and the secound argument is a
signal and not the result direct via verdict.

DETAILS:
If inside a script Assesslet the funcƟon REQUIREMENTS.checked("REQ-1",check_sig) is used with a signal
with a result, the funcƟon does not use the result of signal check_sig, instead the funcƟon uses the value
of this signal.

check_sig = TPT.UInt8X()
check_sig := 0
check_sig.setResult(TPT.PASSED)
REQUIREMENTS.checked("REQ-1",check_sig)
In this case "REQ-1" is marked as FAILED, instead of PASSED.

EFFECT OF THE ISSUE:
Requirements get the wrong result.

WORKAROUND:
Use instead
REQUIREMENTS.checked("REQ-1",check_sig.getResult())

RESOLVED IN:
TPT 17u4, TPT 18u1

ISSUE # 33174
=============
TITLE:
TPT trigger rule, implausible interval discarding, when using "t" in 'Abort'/'Ignore intervals if' condiƟons.

ISSUE DETECTION:
02-May-2022

AFFECTED VERSIONS OF TPT:
TPT 13 to TPT 18

PRECONDITIONS:
The TPT project contains Trigger Rule assesslets using "t" in 'Abort'/'Ignore intervals if' condiƟons.

DETAILS:
In general, abort condiƟons influence whether an interval is used for analyzing THEN/ELSE-checks or not.
If an 'Abort'/'Ignore intervals if' condiƟon is true within such an interval, the interval is discarded and
no THEN/ELSE checks take place in this parƟcular interval.
The inconsistency arises from the use of "t" in the 'Abort condiƟon' of "Trigger condiƟon"-checks because
"t" refers for THEN-intervals to the *global* Ɵme (Ɵme elapsed since the trigger rule evaluaƟon started),
but for ELSE-intervals to the *local* Ɵme (Ɵme since the beginning of the respecƟve interval).
Furthermore, in the 'Ignore intervals if' condiƟon of "While condiƟon is true"-checks "t" refers for both,
THEN- and ELSE-intervals, to the *local* Ɵme (Ɵme since the beginning of the respecƟve interval).
Since "t" in the START/STOP condiƟons always refer to the global Ɵme, this should also be uniformly
corrected to the *global* Ɵme in all 'Abort'/'Ignore intervals if' condiƟons. To avoid incompaƟblity for
exisƟng models, this behavior shall be able to explicitly be turned on/off in the TPT Tool Preferences
(seƫngs per model).

EFFECT OF THE ISSUE:
The intervals discarded according to 'Abort'/'Ignore intervals if' condiƟons containing "t" might be
discarded or retained under implausible (but determinisƟc and well-defined) condiƟons.

WORKAROUND:
There is no real workaround, since the old behavior is not wrong! It is simply implausible or inconsistent
and should therefore be adjusted to avoid misunderstandings. For this reason, the behavior was only
adjusted via a preference opƟon (configurable via TPT Tool Preferences): As long as this opƟon is not
selected in old TPT models, the behavior remains unchanged even aŌer the fix to maintain compaƟbility.
In new TPT models, however, the TPT Tool Preference opƟon is automaƟcally preset.

RESOLVED IN:
TPT 17u4, TPT 18u1

ISSUE # 31924
=============
TITLE:
RMI API is vulnerable to "CWE - 502 : DeserializaƟon of Untrusted Data" due to used libraries.
ExecuƟon of arbitrary code is possible.

ISSUE DETECTION:
02-November-2021

AFFECTED VERSIONS OF TPT:
TPT 7 to TPT 17u1

PRECONDITIONS:
- RMI/Remote API is acƟvated in preferences and library commons-collecƟons-3.2.1.jar is present
 in your TPT installaƟon directory in "lib\commons-collecƟons-3.2.1.jar".
- firewall allows access of RMI API from other computers

DETAILS:
If RMI API is enabled and exposed by your firewall an unauthenƟcated aƩacker could execute arbitrary
code on the remote machine. Java cannot verify that serialized objects are well formed. In some cases
an aƩacker can use modified data to execute code during deserializaƟon. There are some known "gadgets"
that can be used by an aƩacker. One gadget is the libray commons-collecƟons version 3.2.1. The aƩack
can be prevented by restricƟng deserializaƟon by using deserializaƟon filters or upgrading the libraries
to unvulnerable versions.

EFFECT OF THE ISSUE:
An unauthenƟcated aƩacker could execute arbitrary code on the remote machine.

WORKAROUND:
Disable RMI API or replace "lib\commons-collecƟons-3.2.1.jar" by commons collecƟon version 3.2.2.

RESOLVED IN:
TPT 15u5, TPT 16u4, TPT 17u2

ISSUE # 30102
=============

 TITLE:
When comparing INT64 signals using Min/Max or Signal Comparison assesslet
with values larger than 2^53 or smaller than -2^53, the computaƟon can
incorrectly compare the signal with the reference(s) which might lead to
PASSED results even if the specified bounds are exceeded.

ISSUE DETECTION:
11-January-2021

AFFECTED VERSIONS OF TPT:
TPT 8 - TPT 16

PRECONDITIONS:
The Min/Max or Signal Comparison assesslet is used with INT64 signals
with values larger than 2^53 or smaller than -2^53.

DETAILS:
If signal or reference values are larger than 2^53 or smaller than -2^53,
the difference can be missed because the values are converted and compared
as double values. (Since values larger/smaller than 2^53/-2^53) cannot be
converted to double without losing precision, floaƟng point precision
problems might occur in such cases.)

EFFECT OF THE ISSUE:

Values outside of the specified bounds might be overlooked by TPT leading to
PASSED results, but should be FAILED.

WORKAROUND:
Avoid using INT64 signals in Min/Max or Signal Comparison assesslets if the
values are larger than 2^53 or smaller than -2^53.

RESOLVED IN:
TPT 15u4, TPT 16u1

ISSUE # 30063
=============
TITLE:
When iteraƟng in assessment scripts via an inlined loop and
applying signal processing funcƟons like TPT.average(), TPT.min(),
... with changing argument in each loop, the result of the first iteraƟon
is incorrectly used for the following iteraƟons.

ISSUE DETECTION:
16-December-2020

AFFECTED VERSIONS OF TPT:
TPT 8 - TPT 16

PRECONDITIONS:
The usage of the signal processing funcƟon must be applied on an expression
or a signal that is being changed while iteraƟng through an inlined loop or list comprehension.

DETAILS:
For faster computaƟon of Ɵmed expressions of the form
 foo(t) := TPT.average(...)
results of signal processing funcƟons are being cached.
The cached result is invalidated as soon as a new line is reached.
When iteraƟng through an inlined loop, the same expression is evaluated mulƟple Ɵmes.
If during this inlined iteraƟon a variable of the expression is changed,
the cached result of the signal processing funcƟon is used instead of a newly calculated.

Affected are inlined expressions of the form
 for x in range(n): print TPT.min(...+x)
 while x < n: x=x+1;print TPT.min(...+x)
as well as list comprehension:
 my_list = [TPT.min(...+x) for x in range(n)].

EFFECT OF THE ISSUE:
Old cached values are used instead of recalculaƟng the value in every iteraƟon,
which results in wrong computaƟon results.

WORKAROUND:
Avoid using inlined loops or list comperhensions and use loops with indentaƟon
in mulƟple code lines instead.

RESOLVED IN:

TPT 15u4, TPT 16u1

ISSUE # 29261
=============
TITLE:
When execuƟng tests using the FUSION plaƞorm,the mechanism
"Read parameters from FUSION only once (before first test
case)" does not ensure that the first test case has
completed the parameter exchange before the following test
cases use the parameters.

ISSUE DETECTION:
 4–September-2020

AFFECTED VERSIONS OF TPT:
TPT 12, TPT 13, TPT 14, and TPT 15

PRECONDITIONS:
The checkbox "Read parameters from FUSION only once (before
first test case)" must be selected in the FUSION plaƞorm and
the number of cores in the ExecuƟon ConfiguraƟon dialog must
be greater than 1.

DETAILS:
When running tests in mulƟcore mode using the FUSION plaƞorm
and the opƟon "Read parameters from FUSION only once (before
first test case)" is selected, the test cases are executed
immediately without waiƟng unƟl the parameters have been
exchanged.

EFFECT OF THE ISSUE:
For tests executed in parallel (i.e. all but the first test
case), not the parameter values determined during a parameter
exchange are used, but the default values from the DeclaraƟon
Editor (nondeterminisƟc behavior).

WORKAROUND:
Deselect the "Read parameters from FUSION only once (before
first test case)" checkbox in the FUSION plaƞorm
configuraƟon, or do not run tests in mulƟcore mode.

RESOLVED IN:
TPT14u3, TPT15u2

ISSUE # 26884
==============
TITLE:
Local search and replace in step lists always replaced all
occurrences in table steps at once and so may replace entries
unnoƟceably the user did not intend to change.
ISSUE DETECTION:
15-Jul-19

AFFECTED VERSIONS OF TPT:
TPT 12 – TPT 13

PRECONDITIONS:
A step list including a table step with mulƟple occurrences
of a search term and trying to replace one of these.

DETAILS:
If a search term occurs mulƟple Ɵmes in a table step trying
to replace one of them using the search dialog always replaces
all occurrences in the table step. Generally, the issue
affects all tables embedded in other tables but the table step
is the only one where this condiƟon applies.

EFFECT OF THE ISSUE:
Due the unexpected behavior of search and replace more changes
than intended may be done to table steps leading to unintended
TPT model behavior.

WORKAROUND:
Using global search and replace to replace occurrences of a
search term in table steps. Changes done by local search and
replace affecƟng table steps have to be reviewed carefully.

RESOLVED IN:
TPT13u2

ISSUE # 26796
==============
TITLE:
If explicit array-of-struct values are being used in TPT
models (e.g. “mychannel := [{2,3},{4,param+5}]”) these
expressions can compute wrong values at runƟme if the arrayof-struct expression refers to non-constant
channels or
parameters.

ISSUE DETECTION:
01-Jul-19

AFFECTED VERSIONS OF TPT:
TPT 12 – TPT 13

PRECONDITIONS:
TPT computes wrong values at runƟme under the following
condiƟons: an explicit array-of-struct value is assigned to a
channel orparameter (e.g. in a step list) AND the array-ofstruct value itself depends on channels/parameters
AND•these
channels/parameters are not constant (at runƟme) AND these
channels/parameters have values that differ from their default
values (as specified in the declaraƟon editor).

DETAILS:
In the special case of explicit array-of-struct expressions
(e.g. “mychannel := [{2,3},{4,param+5}]”) any reference to
channels/parameters inside this expression will not be
computed dynamically (at runƟme), but computed just once when
iniƟalizing the expression (before runƟme). Therefore, if
the value of channels/parameters that are referred inside this
expression changes at runƟme, the array-of-struct expression
will not update its value.The fix now explicitly prohibits the
usage of (a) references to all channels (b) references to all
parameters that are modified dynamically in the test model
inside any explicit array-of-struct expression. Otherwise the
TPT compiler will raise a compile error.

EFFECT OF THE ISSUE:
In the special case of explicit array-of-struct expressions
(e.g. “mychannel := [{2,3},{4,param+5}]”) with references to
non-constant channels or parameters, the value of the arrayof-struct expression gets stuck with its iniƟal
value for
all points in Ɵme even if the referred channels/parameters
change. AŌer the fix related to this issue, those expressions
are denied by the compiler.

WORKAROUND:
Instead of assigning the whole array-of-struct use individual
assignments for non-constant elements.

RESOLVED IN:
TPT13u2

