
 TPT 18 Severe Issues

IntroducƟon
============
The following document contains a list of known severe issues of TPT. By severe issues we mean issues/bugs

in parƟcular versions of TPT that:

 1. might cause malfuncƟons in the behavior of TPT
 2. are hard or even impossible to find by the TPT user herself/himself
 3. cause the risk that bugs/defects in a SUT (system under test) are not detected by TPT in cases where
 TPT would have been able to reveal these bugs/defects in the SUT without the aforemenƟoned
 malfuncƟon in the behavior of TPT.

Usually these severe issues address the situaƟons where the problem might appear and have well-defined
workarounds.

ISSUE # 35247
=============
TITLE: Incorrect coverage results for MC/DC when using TPT Coverage with complex leŌ-bound logical
operaƟons.

ISSUE DETECTION:
25-May-2023

AFFECTED VERSIONS OF TPT:
TPT 18 to TPT 18u3, TPT 19

PRECONDITIONS:
The user-code (C/C++ Plaƞorm) or a Stateflow transiƟon (MATLAB plaƞorm) contains a complex leŌ-bound
inter logical condiƟon - e.g. within a single decision.
TPT Coverage (TASMO) is enabled for the plaƞorm or the TASMO test data generaƟon is used.

DETAILS:
The MC/DC coverage for some goals may be evaluated as covered although it is not.

EFFECT OF THE ISSUE:
Some coverage goals may be marked as covered although they are not. The overall staƟsƟcs may have
incorrect numbers.

WORKAROUND:
Do not measure the MC/DC Coverage with TPT coverage (TASMO) if this use-case occurs.

RESOLVED IN:
TPT 18u4, TPT 19u1

ISSUE # 34814
=============
TITLE: Compiler-Bug when compiling index-based array-accesses for declared constants that are arrays or
structs containing arrays.

ISSUE DETECTION:
25-February-2023

AFFECTED VERSIONS OF TPT:
TPT 17 to TPT18u2

PRECONDITIONS:
A constant must be declared which has an array type, matrix type or a struct type that contains an array.
In the test model there is at least an index-based access to this array constant, i.e. "myarray[index]" where
"index" differs from "0".

DETAILS:
Assume that the above condiƟons hold in a TPT model. Then the TPT compiler has produced faulty code, so
that instead of the access
"myarray[index]" always "myarray[0]" was used. Note that this error only occurs with declared constants
and **not** with declared
channels or declared parameters.

EFFECT OF THE ISSUE:
The wrong values of declared constant arrays in the test model are accessed and, if used, might result in
wrong test results.

WORKAROUND:
Convert all declared array constants to local array parameters. The menƟoned error does not occur with
declared array parameters or array channels.

RESOLVED IN:
TPT 17u5, TPT18u3

ISSUE # 33962
=============
TITLE:
Assessment variables in *Global Assesselts* shall forbid using numeric operaƟons (+,-,*,/,%) and
comparisons (>,>=,<,<=,==,!=) to avoid misunderstandings about the semanƟcs.

ISSUE DETECTION:
01-November-2022

AFFECTED VERSIONS OF TPT:
TPT 18u1

PRECONDITIONS:
when using Global Assesslets with global variables in conjuncƟon with numeric or comparison operators.

DETAILS:
Assessment variables in *global* assessment contain the values of all contribuƟng test cases as a
list-of-values. For example: If an assessment varible "a" is defined in 5 test cases as 1,2,3,4, and 5, the
variable "a" in Global assesslet has the list-of-values [1,2,3,4,5].
This might cause confusions when using these variables in numeric operaƟons (+,-,*,/,%) or in comparisons
(>,>=,<,<=,==,!=) because the user might expect operaƟons of the *individual* values instead of list
operaƟons.

Therefore, the menƟoned operators shall be forbidden in Global Assesslets at all.
Note that this change might cause exisƟng test models to fail in global assesslet (compaƟbility issue!).

EFFECT OF THE ISSUE:
misunderstandings in the semanƟcs of the aforemenƟoned operators.

WORKAROUND:
do not use the aforemenƟoned operators for global assessment variables. Use the operators *only* for
individual
values of these variables (example: use "if a[idx] < 2:" instead of "if a < 2:")

RESOLVED IN:
TPT 18u2

ISSUE # 33511
=============
TITLE:
Wrong Ɵmes used for TPT.getConstant(...) and TPT.isConstant(...) with local Ɵme

ISSUE DETECTION:
22-July-2022

AFFECTED VERSIONS OF TPT:
TPT 18, TPT 18u1

PRECONDITIONS:
Using of TPT.getConstant(Ɵmed_float expr, Ɵme starƫme, Ɵme endƟme) or
TPT.getConstant(Ɵmed_float expr, Ɵme starƫme, Ɵme endƟme).
Please note that TPT.getConstant was falsely documented as expecƟng a Ɵmed_bool instead of a
Ɵmed_float for 'expr'.

DETAILS:
When using TPT.getConstant(Ɵmed_float expr, Ɵme starƫme, Ɵme endƟme) or
TPT.getConstant(Ɵmed_float expr, Ɵme starƫme, Ɵme endƟme) with a local Ɵme context, e.g. inside a
during,
the Ɵme values passed to the methods were interpreted as global Ɵme values instead of local Ɵme values.
So the
methods use the wrong Ɵme interval to calculate the constant value for the
given Ɵmed expression.

EFFECT OF THE ISSUE:
The wrong Ɵme intervall is used to calculate the constant value. So a wrong result can be returned:
- TPT.getConstant() can return a wrong constant value for the given (local) Ɵme interval
- TPT.getConstant() can return a constant value instead of None if the given expression is not constant in the
 given (local) Ɵme interval or vice versa
- TPT.isConstant() can return True instead of False if the given expression is not constant in the given (local)
 Ɵme interval or vice versa

WORKAROUND:
As a workaround the starƫme and endƟme can be manually translate to global Ɵme by using
TPT.toGlobal(Ɵme localƟme).
However, this workaround will lead to wrong results when using a TPT version where the issue is fixed

(TPT18u2 and higher versions).

RESOLVED IN:
TPT 18u2

ISSUE # 33413
=============
TITLE:
Assessment funcƟon REQUIREMENTS.checked() does not work correctly, if the secound argument is a signal
or type boolean or int and not a verdict.

ISSUE DETECTION:
07-June-2022

AFFECTED VERSIONS OF TPT:
TPT 13 to TPT 18

PRECONDITIONS:
TPT Script Assessment contains REQUIREMENTS.checked("REQ-1",check_sig) and the secound argument is a
signal and not the result direct via verdict.

DETAILS:
If inside a script Assesslet the funcƟon REQUIREMENTS.checked("REQ-1",check_sig) is used with a signal
with a result, the funcƟon does not use the result of signal check_sig, instead the funcƟon uses the value
of this signal.

check_sig = TPT.UInt8X()
check_sig := 0
check_sig.setResult(TPT.PASSED)
REQUIREMENTS.checked("REQ-1",check_sig)
In this case "REQ-1" is marked as FAILED, instead of PASSED.

EFFECT OF THE ISSUE:
Requirements get the wrong result.

WORKAROUND:
Use instead
REQUIREMENTS.checked("REQ-1",check_sig.getResult())

RESOLVED IN:
TPT 17u4, TPT 18u1

ISSUE # 33174
=============
TITLE:
TPT trigger rule, implausible interval discarding, when using "t" in 'Abort'/'Ignore intervals if' condiƟons.

ISSUE DETECTION:
02-May-2022

AFFECTED VERSIONS OF TPT:

TPT 13 to TPT 18

PRECONDITIONS:
The TPT project contains Trigger Rule assesslets using "t" in 'Abort'/'Ignore intervals if' condiƟons.

DETAILS:
In general, abort condiƟons influence whether an interval is used for analyzing THEN/ELSE-checks or not.
If an 'Abort'/'Ignore intervals if' condiƟon is true within such an interval, the interval is discarded and
no THEN/ELSE checks take place in this parƟcular interval.
The inconsistency arises from the use of "t" in the 'Abort condiƟon' of "Trigger condiƟon"-checks because
"t" refers for THEN-intervals to the *global* Ɵme (Ɵme elapsed since the trigger rule evaluaƟon started),
but for ELSE-intervals to the *local* Ɵme (Ɵme since the beginning of the respecƟve interval).
Furthermore, in the 'Ignore intervals if' condiƟon of "While condiƟon is true"-checks "t" refers for both,
THEN- and ELSE-intervals, to the *local* Ɵme (Ɵme since the beginning of the respecƟve interval).
Since "t" in the START/STOP condiƟons always refer to the global Ɵme, this should also be uniformly
corrected to the *global* Ɵme in all 'Abort'/'Ignore intervals if' condiƟons. To avoid incompaƟblity for
exisƟng models, this behavior shall be able to explicitly be turned on/off in the TPT Tool Preferences
(seƫngs per model).

EFFECT OF THE ISSUE:
The intervals discarded according to 'Abort'/'Ignore intervals if' condiƟons containing "t" might be
discarded or retained under implausible (but determinisƟc and well-defined) condiƟons.

WORKAROUND:
There is no real workaround, since the old behavior is not wrong! It is simply implausible or inconsistent
and should therefore be adjusted to avoid misunderstandings. For this reason, the behavior was only
adjusted via a preference opƟon (configurable via TPT Tool Preferences): As long as this opƟon is not
selected in old TPT models, the behavior remains unchanged even aŌer the fix to maintain compaƟbility.
In new TPT models, however, the TPT Tool Preference opƟon is automaƟcally preset.

RESOLVED IN:
TPT 17u4, TPT 18u1

