
 TPT 18 Severe Issues

Introduc on
============
The following document contains a list of known severe issues of TPT. By severe issues we mean issues/bugs

in par cular versions of TPT that:

 1. might cause malfunc ons in the behavior of TPT
 2. are hard or even impossible to find by the TPT user herself/himself
 3. cause the risk that bugs/defects in a SUT (system under test) are not detected by TPT in cases where
 TPT would have been able to reveal these bugs/defects in the SUT without the aforemen oned
 malfunc on in the behavior of TPT.

Usually these severe issues address the situa ons where the problem might appear and have well-defined
workarounds.

ISSUE # 35247
=============
TITLE: Incorrect coverage results for MC/DC when using TPT Coverage with complex le -bound logical
opera ons.

ISSUE DETECTION:
25-May-2023

AFFECTED VERSIONS OF TPT:
TPT 18 to TPT 18u3, TPT 19

PRECONDITIONS:
The user-code (C/C++ Pla orm) or a Stateflow transi on (MATLAB pla orm) contains a complex le -bound
inter logical condi on - e.g. within a single decision.
TPT Coverage (TASMO) is enabled for the pla orm or the TASMO test data genera on is used.

DETAILS:
The MC/DC coverage for some goals may be evaluated as covered although it is not.

EFFECT OF THE ISSUE:
Some coverage goals may be marked as covered although they are not. The overall sta s cs may have
incorrect numbers.

WORKAROUND:
Do not measure the MC/DC Coverage with TPT coverage (TASMO) if this use-case occurs.

RESOLVED IN:
TPT 18u4, TPT 19u1

ISSUE # 34814
=============
TITLE: Compiler-Bug when compiling index-based array-accesses for declared constants that are arrays or
structs containing arrays.

ISSUE DETECTION:
25-February-2023

AFFECTED VERSIONS OF TPT:
TPT 17 to TPT18u2

PRECONDITIONS:
A constant must be declared which has an array type, matrix type or a struct type that contains an array.
In the test model there is at least an index-based access to this array constant, i.e. "myarray[index]" where
"index" differs from "0".

DETAILS:
Assume that the above condi ons hold in a TPT model. Then the TPT compiler has produced faulty code, so
that instead of the access
"myarray[index]" always "myarray[0]" was used. Note that this error only occurs with declared constants
and **not** with declared
channels or declared parameters.

EFFECT OF THE ISSUE:
The wrong values of declared constant arrays in the test model are accessed and, if used, might result in
wrong test results.

WORKAROUND:
Convert all declared array constants to local array parameters. The men oned error does not occur with
declared array parameters or array channels.

RESOLVED IN:
TPT 17u5, TPT18u3

ISSUE # 33962
=============
TITLE:
Assessment variables in *Global Assesselts* shall forbid using numeric opera ons (+,-,*,/,%) and
comparisons (>,>=,<,<=,==,!=) to avoid misunderstandings about the seman cs.

ISSUE DETECTION:
01-November-2022

AFFECTED VERSIONS OF TPT:
TPT 18u1

PRECONDITIONS:
when using Global Assesslets with global variables in conjunc on with numeric or comparison operators.

DETAILS:
Assessment variables in *global* assessment contain the values of all contribu ng test cases as a
list-of-values. For example: If an assessment varible "a" is defined in 5 test cases as 1,2,3,4, and 5, the
variable "a" in Global assesslet has the list-of-values [1,2,3,4,5].
This might cause confusions when using these variables in numeric opera ons (+,-,*,/,%) or in comparisons
(>,>=,<,<=,==,!=) because the user might expect opera ons of the *individual* values instead of list
opera ons.

Therefore, the men oned operators shall be forbidden in Global Assesslets at all.
Note that this change might cause exis ng test models to fail in global assesslet (compa bility issue!).

EFFECT OF THE ISSUE:
misunderstandings in the seman cs of the aforemen oned operators.

WORKAROUND:
do not use the aforemen oned operators for global assessment variables. Use the operators *only* for
individual
values of these variables (example: use "if a[idx] < 2:" instead of "if a < 2:")

RESOLVED IN:
TPT 18u2

ISSUE # 33511
=============
TITLE:
Wrong mes used for TPT.getConstant(...) and TPT.isConstant(...) with local me

ISSUE DETECTION:
22-July-2022

AFFECTED VERSIONS OF TPT:
TPT 18, TPT 18u1

PRECONDITIONS:
Using of TPT.getConstant(med_float expr, me star me, me end me) or
TPT.getConstant(med_float expr, me star me, me end me).
Please note that TPT.getConstant was falsely documented as expec ng a med_bool instead of a

med_float for 'expr'.

DETAILS:
When using TPT.getConstant(med_float expr, me star me, me end me) or
TPT.getConstant(med_float expr, me star me, me end me) with a local me context, e.g. inside a
during,
the me values passed to the methods were interpreted as global me values instead of local me values.
So the
methods use the wrong me interval to calculate the constant value for the
given med expression.

EFFECT OF THE ISSUE:
The wrong me intervall is used to calculate the constant value. So a wrong result can be returned:
- TPT.getConstant() can return a wrong constant value for the given (local) me interval
- TPT.getConstant() can return a constant value instead of None if the given expression is not constant in the
 given (local) me interval or vice versa
- TPT.isConstant() can return True instead of False if the given expression is not constant in the given (local)
 me interval or vice versa

WORKAROUND:
As a workaround the star me and end me can be manually translate to global me by using
TPT.toGlobal(me local me).
However, this workaround will lead to wrong results when using a TPT version where the issue is fixed

(TPT18u2 and higher versions).

RESOLVED IN:
TPT 18u2

ISSUE # 33413
=============
TITLE:
Assessment func on REQUIREMENTS.checked() does not work correctly, if the secound argument is a signal
or type boolean or int and not a verdict.

ISSUE DETECTION:
07-June-2022

AFFECTED VERSIONS OF TPT:
TPT 13 to TPT 18

PRECONDITIONS:
TPT Script Assessment contains REQUIREMENTS.checked("REQ-1",check_sig) and the secound argument is a
signal and not the result direct via verdict.

DETAILS:
If inside a script Assesslet the func on REQUIREMENTS.checked("REQ-1",check_sig) is used with a signal
with a result, the func on does not use the result of signal check_sig, instead the func on uses the value
of this signal.

check_sig = TPT.UInt8X()
check_sig := 0
check_sig.setResult(TPT.PASSED)
REQUIREMENTS.checked("REQ-1",check_sig)
In this case "REQ-1" is marked as FAILED, instead of PASSED.

EFFECT OF THE ISSUE:
Requirements get the wrong result.

WORKAROUND:
Use instead
REQUIREMENTS.checked("REQ-1",check_sig.getResult())

RESOLVED IN:
TPT 17u4, TPT 18u1

ISSUE # 33174
=============
TITLE:
TPT trigger rule, implausible interval discarding, when using "t" in 'Abort'/'Ignore intervals if' condi ons.

ISSUE DETECTION:
02-May-2022

AFFECTED VERSIONS OF TPT:

TPT 13 to TPT 18

PRECONDITIONS:
The TPT project contains Trigger Rule assesslets using "t" in 'Abort'/'Ignore intervals if' condi ons.

DETAILS:
In general, abort condi ons influence whether an interval is used for analyzing THEN/ELSE-checks or not.
If an 'Abort'/'Ignore intervals if' condi on is true within such an interval, the interval is discarded and
no THEN/ELSE checks take place in this par cular interval.
The inconsistency arises from the use of "t" in the 'Abort condi on' of "Trigger condi on"-checks because
"t" refers for THEN-intervals to the *global* me (me elapsed since the trigger rule evalua on started),
but for ELSE-intervals to the *local* me (me since the beginning of the respec ve interval).
Furthermore, in the 'Ignore intervals if' condi on of "While condi on is true"-checks "t" refers for both,
THEN- and ELSE-intervals, to the *local* me (me since the beginning of the respec ve interval).
Since "t" in the START/STOP condi ons always refer to the global me, this should also be uniformly
corrected to the *global* me in all 'Abort'/'Ignore intervals if' condi ons. To avoid incompa blity for
exis ng models, this behavior shall be able to explicitly be turned on/off in the TPT Tool Preferences
(se ngs per model).

EFFECT OF THE ISSUE:
The intervals discarded according to 'Abort'/'Ignore intervals if' condi ons containing "t" might be
discarded or retained under implausible (but determinis c and well-defined) condi ons.

WORKAROUND:
There is no real workaround, since the old behavior is not wrong! It is simply implausible or inconsistent
and should therefore be adjusted to avoid misunderstandings. For this reason, the behavior was only
adjusted via a preference op on (configurable via TPT Tool Preferences): As long as this op on is not
selected in old TPT models, the behavior remains unchanged even a er the fix to maintain compa bility.
In new TPT models, however, the TPT Tool Preference op on is automa cally preset.

RESOLVED IN:
TPT 17u4, TPT 18u1

